解析学要論  2

山本稔 編

本書は「複素解析」と「フーリエ解析」の入門を述べてある。全体を通して、豊富な例と解法を付してある。

「BOOKデータベース」より

[目次]

  • 複素関数(複素数
  • 複素平面
  • 複素数列
  • 複素平面上の領域
  • 複素関数)
  • 複素関数の微分および積分(正則関数
  • コーシー・リーマンの方程式
  • 基本的関数
  • 多価関数
  • 複素関数の積分
  • コーシーの積分表示)
  • 複素関数の展開・特異点・留数(べき級数
  • テイラー展開
  • ローラン展開
  • 留数
  • 留数の応用
  • 偏角の原理)
  • フーリエ級数とその応用(フーリエ級数
  • フーリエ級数の収束
  • フーリエ級数の積分と微分
  • ベッセルの不等式とパーセバルの等式
  • 直交関数系と一般フーリエ級数
  • フーリエ級数と境界値問題)
  • フーリエ変換とその応用(フーリエ積分とフーリエ変換
  • フーリエ変換の性質
  • フーリエ変換の偏微分方程式への応用)

「BOOKデータベース」より

この本の情報

書名 解析学要論
著作者等 山本 稔
石井 博昭
魚崎 勝司
書名ヨミ カイセキガク ヨウロン
書名別名 複素解析とフーリエ解析
巻冊次 2
出版元 裳華房
刊行年月 1989.5
ページ数 196p
大きさ 21cm
ISBN 478531057X
NCID BN03589144
※クリックでCiNii Booksを表示
全国書誌番号
89045192
※クリックで国立国会図書館サーチを表示
言語 日本語
出版国 日本

掲載作品

この本を: 
このエントリーをはてなブックマークに追加

このページを印刷

外部サイトで検索

この本と繋がる本を検索

ウィキペディアから連想