Braid groups

Christian Kassel, Vladimir Turaev ; with the graphical assistance of Olivier Dodane

In this well-written presentation, motivated by numerous examples and problems, the authors introduce the basic theory of braid groups, highlighting several definitions that show their equivalence; this is followed by a treatment of the relationship between braids, knots and links. Important results then treat the linearity and orderability of the subject. Relevant additional material is included in five large appendices. Braid Groups will serve graduate students and a number of mathematicians coming from diverse disciplines.

「Nielsen BookData」より

[目次]

  • Braids and Braid Groups.- Braids, Knots, and Links.- Homological Representations of the Braid Groups.- Symmetric Groups and Iwahori–Hecke Algebras.- Representations of the Iwahori–Hecke Algebras.- Garside Monoids and Braid Monoids.- An Order on the Braid Groups.- Presentations of SL(Z) and PSL(Z).- Fibrations and Homotopy Sequences.- The Birman–Murakami–Wenzl Algebras.- Left Self-Distributive Sets.

「Nielsen BookData」より

この本の情報

書名 Braid groups
著作者等 Kassel, Christian
Turaev, V. G.
Dodane O.
Turaev Vladimir
Dodane Olivier
シリーズ名 Graduate texts in mathematics
出版元 Springer
刊行年月 c2008
ページ数 xi, 340 p.
大きさ 25 cm
ISBN 9780387338415
NCID BA86939434
※クリックでCiNii Booksを表示
言語 英語
出版国 アメリカ合衆国
この本を: 
このエントリーをはてなブックマークに追加

このページを印刷

外部サイトで検索

この本と繋がる本を検索

ウィキペディアから連想