Compensatory genetic fuzzy neural networks and their applications

Yanqing Zhang, Abraham Kandel

This book presents a powerful hybrid intelligent system based on fuzzy logic, neural networks, genetic algorithms and other intelligent techniques. The new compensatory genetic fuzzy neural networks have been widely used in fuzzy control, nonlinear system modeling, compression of a fuzzy rule base, expansion of a sparse fuzzy rule base, fuzzy knowledge discovery, time series prediction, fuzzy games and pattern recognition. This effective soft computing system is able to perform both linguistic-word-level fuzzy reasoning and numerical-date-level information processing. The book also proposes various novel soft computing techniques.

「Nielsen BookData」より

[目次]

  • Fuzzy compensation principles
  • normal fuzzy reasoning methodology
  • compensatory genetic fuzzy neural networks
  • fuzzy knowledge rediscovery in fuzzy rule bases
  • fuzzy cat-pole balancing control systems
  • fuzzy knowledge compression and expansion
  • highly nonlinear system modelling and prediction
  • fuzzy moves in fuzzy games
  • genetic neuro-fuzzy pattern recognition
  • constructive approach to modelling fuzzy systems.

「Nielsen BookData」より

この本の情報

書名 Compensatory genetic fuzzy neural networks and their applications
著作者等 Kandel, Abraham
Zhang, Yan-Qing
Zhang Yan-Qing (University of South Florida USA)
Yan-Qing Zhang
シリーズ名 Series in machine perception and artificial intelligence
出版元 World Scientific
刊行年月 c1998
ページ数 xii, 186 p.
大きさ 23 cm
ISBN 9810233493
NCID BA38053932
※クリックでCiNii Booksを表示
言語 英語
出版国 シンガポール
この本を: 
このエントリーをはてなブックマークに追加

このページを印刷

外部サイトで検索

この本と繋がる本を検索

ウィキペディアから連想