Algebraic topology : a first course

William Fulton

This book introduces the important ideas of algebraic topology by emphasizing the relation of these ideas with other areas of mathematics. Rather than choosing one point of view of modern topology (homotropy theory, axiomatic homology, or differential topology, say) the author concentrates on concrete problems in spaces with a few dimensions, introducing only as much algebraic machinery as necessary for the problems encountered. This makes it possible to see a wider variety of important features in the subject than is common in introductory texts; it is also in harmony with the historical development of the subject. The book is aimed at students who do not necessarily intend on specializing in algebraic topology.

「Nielsen BookData」より


  • I Calculus in the Plane.- 1 Path Integrals.- 1a. Differential Forms and Path Integrals.- 1b. When Are Path Integrals Independent of Path?.- 1c. A Criterion for Exactness.- 2 Angles and Deformations.- 2a. Angle Functions and Winding Numbers.- 2b. Reparametrizing and Deforming Paths.- 2c. Vector Fields and Fluid Flow.- II Winding Numbers.- 3 The Winding Number.- 3a. Definition of the Winding Number.- 3b. Homotopy and Reparametrization.- 3c. Varying the Point.- 3d. Degrees and Local Degrees.- 4 Applications of Winding Numbers.- 4a. The Fundamental Theorem of Algebra.- 4b. Fixed Points and Retractions.- 4c. Antipodes.- 4d. Sandwiches.- III Cohomology and Homology, I.- 5 De Rham Cohomology and the Jordan Curve Theorem.- 5a. Definitions of the De Rham Groups.- 5b. The Coboundary Map.- 5c. The Jordan Curve Theorem.- 5d. Applications and Variations.- 6 Homology.- 6a. Chains, Cycles, and H0U.- 6b. Boundaries, H1U, and Winding Numbers.- 6c. Chains on Grids.- 6d. Maps and Homology.- 6e. The First Homology Group for General Spaces.- IV Vector Fields.- 7 Indices of Vector Fields.- 7a. Vector Fields in the Plane.- 7b. Changing Coordinates.- 7c. Vector Fields on a Sphere.- 8 Vector Fields on Surfaces.- 8a. Vector Fields on a Torus and Other Surfaces.- 8b. The Euler Characteristic.- V Cohomology and Homology, II.- 9 Holes and Integrals.- 9a. Multiply Connected Regions.- 9b. Integration over Continuous Paths and Chains.- 9c. Periods of Integrals.- 9d. Complex Integration.- 10 Mayer-Vietoris.- 10a. The Boundary Map.- 10b. Mayer-Vietoris for Homology.- 10c. Variations and Applications.- 10d. Mayer-Vietoris for Cohomology.- VI Covering Spaces and Fundamental Groups, I.- 11 Covering Spaces.- 11a. Definitions.- 11b. Lifting Paths and Homotopies.- 11c. G-Coverings.- 11d. Covering Transformations.- 12 The Fundamental Group.- 12a. Definitions and Basic Properties.- 12b. Homotopy.- 12c. Fundamental Group and Homology.- VII Covering Spaces and Fundamental Groups, II.- 13 The Fundamental Group and Covering Spaces.- 13a. Fundamental Group and Coverings.- 13b. Automorphisms of Coverings.- 13c. The Universal Covering.- 13d. Coverings and Subgroups of the Fundamental Group.- 14 The Van Kampen Theorem.- 14a. G-Coverings from the Universal Covering.- 14b. Patching Coverings Together.- 14c. The Van Kampen Theorem.- 14d. Applications: Graphs and Free Groups.- VIII Cohomology and Homology, III.- 15 Cohomology.- 15a. Patching Coverings and ?ech Cohomology.- 15b. ?ech Cohomology and Homology.- 15c. De Rham Cohomology and Homology.- 15d. Proof of Mayer-Vietoris for De Rham Cohomology.- 16 Variations.- 16a. The Orientation Covering.- 16b. Coverings from 1-Forms.- 16c. Another Cohomology Group.- 16d. G-Sets and Coverings.- 16e. Coverings and Group Homomorphisms.- 16f. G-Coverings and Cocycles.- IX Topology of Surfaces.- 17 The Topology of Surfaces.- 17a. Triangulation and Polygons with Sides Identified.- 17b. Classification of Compact Oriented Surfaces.- 17c. The Fundamental Group of a Surface.- 18 Cohomology on Surfaces.- 18a. 1-Forms and Homology.- 18b. Integrals of 2-Forms.- 18c. Wedges and the Intersection Pairing.- 18d. De Rham Theory on Surfaces.- X Riemann Surfaces.- 19 Riemann Surfaces.- 19a. Riemann Surfaces and Analytic Mappings.- 19b. Branched Coverings.- 19c. The Riemann-Hurwitz Formula.- 20 Riemann Surfaces and Algebraic Curves.- 20a. The Riemann Surface of an Algebraic Curve.- 20b. Meromorphic Functions on a Riemann Surface.- 20c. Holomorphic and Meromorphic 1-Forms.- 20d. Riemann's Bilinear Relations and the Jacobian.- 20e. Elliptic and Hyperelliptic Curves.- 21 The Riemann-Roch Theorem.- 21a. Spaces of Functions and 1-Forms.- 21b. Adeles.- 21c. Riemann-Roch.- 21d. The Abel-Jacobi Theorem.- XI Higher Dimensions.- 22 Toward Higher Dimensions.- 22a. Holes and Forms in 3-Space.- 22b. Knots.- 22c. Higher Homotopy Groups.- 22d. Higher De Rham Cohomology.- 22e. Cohomology with Compact Supports.- 23 Higher Homology.- 23a. Homology Groups.- 23b. Mayer-Vietoris for Homology.- 23c. Spheres and Degree.- 23d. Generalized Jordan Curve Theorem.- 24 Duality.- 24a. Two Lemmas from Homological Algebra.- 24b. Homology and De Rham Cohomology.- 24c. Cohomology and Cohomology with Compact Supports.- 24d. Simplicial Complexes.- Appendices.- Appendix A Point Set Topology.- A1. Some Basic Notions in Topology.- A2. Connected Components.- A3. Patching.- A4. Lebesgue Lemma.- Appendix B Analysis.- B1. Results from Plane Calculus.- B2. Partition of Unity.- Appendix C Algebra.- C1. Linear Algebra.- C2. Groups
  • Free Abelian Groups.- C3. Polynomials
  • Gauss's Lemma.- Appendix D On Surfaces.- D1. Vector Fields on Plane Domains.- D2. Charts and Vector Fields.- D3. Differential Forms on a Surface.- Appendix E Proof of Borsuk's Theorem.- Hints and Answers.- References.- Index of Symbols.

「Nielsen BookData」より


書名 Algebraic topology : a first course
著作者等 Fulton, William
シリーズ名 Graduate texts in mathematics
出版元 Springer-Verlag
刊行年月 c1995
版表示 1st ed. 1995. Corr. 2nd printing 1997
ページ数 xviii, 430 p.
大きさ 24 cm
ISBN 3540943269
NCID BA25686186
※クリックでCiNii Booksを表示
言語 英語
出版国 アメリカ合衆国