Harmonic approximation

Stephen J. Gardiner

The subject of harmonic approximation has recently matured into a coherent research area with extensive applications. This is the first book to give a systematic account of these developments, beginning with classical results concerning uniform approximation on compact sets, and progressing through fusion techniques to deal with approximation on unbounded sets. All the time inspiration is drawn from holomorphic results such as the well-known theorems of Runge and Mergelyan. The final two chapters deal with wide-ranging and surprising applications to the Dirichlet problem, maximum principle, Radon transform and the construction of pathological harmonic functions. This book is aimed at graduate students and researchers who have some knowledge of subharmonic functions, or an interest in holomorphic approximation.

「Nielsen BookData」より

[目次]

  • 1. Review of thin sets
  • 2. Approximation on compact sets
  • 3. Fusion of harmonic functions
  • 4. Approximation on relatively closed sets
  • 5. Carleman approximation
  • 6. Tangential approximation at infinity
  • 7. Subharmonic extension and approximation
  • 8. The Dirichlet problem with non-compact boundary
  • 9. Further applications.

「Nielsen BookData」より

この本の情報

書名 Harmonic approximation
著作者等 Gardiner, Stephen J
Gardiner Stephen J.
シリーズ名 London Mathematical Society lecture note series
出版元 Cambridge University Press
刊行年月 1995
ページ数 xiii, 132 p.
大きさ 23 cm
ISBN 052149799X
NCID BA25029185
※クリックでCiNii Booksを表示
言語 英語
出版国 イギリス
この本を: 
このエントリーをはてなブックマークに追加

このページを印刷

外部サイトで検索

この本と繋がる本を検索

ウィキペディアから連想