Algebraic K-theory and its applications

Jonathan Rosenberg

Algebraic K-Theory is crucial in many areas of modern mathematics, especially algebraic topology, number theory, algebraic geometry, and operator theory. This text is designed to help graduate students in other areas learn the basics of K-Theory and get a feel for its many applications. Topics include algebraic topology, homological algebra, algebraic number theory, and an introduction to cyclic homology and its interrelationship with K-Theory.

「Nielsen BookData」より

[目次]

  • 1. K0 of Rings.- 1. Defining K0.- 2. K0 from idempotents.- 3. K0 of PIDs and local rings.- 4. K0 of Dedekind domains.- 5. Relative K0 and excision.- 6. An application: Swan's Theorem and topological K- theory.- 7. Another application: Euler characteristics and the Wall finiteness obstruction.- 2.K1 of Rings.- 1. Defining K1.- 2. K1 of division rings and local rings.- 3. 1 of PIDs and Dedekind domains.- 4. Whitehead groups and Whitehead torsion.- 5. Relative K1 and the exact sequence.- 3. K0 and K1 of Categories, Negative K-Theory.- 1. K0 and K1 of categories, Go and G1 of rings.- 2. The Grothendieck and Bass-Heller-Swan Theorems.- 3. Negative K-theory.- 4. Milnor's K2.- 1. Universal central extensions and H2.- Universal central extensions.- Homology of groups.- 2. The Steinberg group.- 3. Milnor's K2.- 4. Applications of K2.- Computing certain relative K1 groups.- K2 of fields and number theory.- Almost commuting operators.- Pseudo-isotopy.- 5. The +?Construction and Quillen K-Theory.- 1. An introduction to classifying spaces.- 2. Quillen's +?construction and its basic properties.- 3. A survey of higher K-theory.- Products.- K-theory of fields and of rings of integers.- The Q-construction and results proved with it.- Applications.- 6. Cyclic homology and its relation to K-Theory.- 1. Basics of cyclic homology.- Hochschild homology.- Cyclic homology.- Connections with "non-commutative de Rham theory".- 2. The Chern character.- The classical Chern character.- The Chern character on K0.- The Chern character on higher K-theory.- 3. Some applications.- Non-vanishing of class groups and Whitehead groups.- Idempotents in C*-algebras.- Group rings and assembly maps.- References.- Books and Monographs on Related Areas of Algebra, Analysis, Number Theory, and Topology.- Books and Monographs on Algebraic K-Theory.- Specialized References.- Notational Index.

「Nielsen BookData」より

この本の情報

書名 Algebraic K-theory and its applications
著作者等 Rosenberg, Jonathan
シリーズ名 Graduate texts in mathematics
出版元 Springer
刊行年月 c1994
版表示 1st ed 1994. Corr. 2nd printing 1995
ページ数 x, 392 p.
大きさ 25 cm
ISBN 3540942483
0387942483
NCID BA23035799
※クリックでCiNii Booksを表示
言語 英語
出版国 アメリカ合衆国
この本を: 
このエントリーをはてなブックマークに追加

このページを印刷

外部サイトで検索

この本と繋がる本を検索

ウィキペディアから連想