Solitons in multidimensions : inverse spectral transform method

B.G. Konopelchenko

The book is devoted to the mathematical theory of soliton phenomena on the plane. The inverse spectral transform method which is a main tool for the study of the (2+1)-dimensional soliton equation is reviewed. The delta-problem and the Riemann-Hilbert problem method are discussed. Several basic examples of soliton equations are considered in detail. This volume is addressed both to the nonexpert and to the researcher in the field.

「Nielsen BookData」より

[目次]

  • Inverse spectral transform in multidimensions - delta-method
  • initial and initial-boundary value problems in 2+1 dimensions
  • delta-dressing method
  • methods of construction of the multidimensional solvable equations and their exact solutions
  • operator and other representation of the integrable systems
  • algebraic structure of soliton equations
  • hierarchies of the integrable equations
  • symmetries and Backlund transformations
  • recursion structures
  • Hamiltonian structure.

「Nielsen BookData」より

この本の情報

書名 Solitons in multidimensions : inverse spectral transform method
著作者等 Konopelchenko, Boris Georgievich
Konopelchenko B.G.
出版元 World Scientific
刊行年月 c1993
ページ数 viii, 294 p.
大きさ 23 cm
ISBN 9810213484
NCID BA20065749
※クリックでCiNii Booksを表示
言語 英語
出版国 シンガポール
この本を: 
このエントリーをはてなブックマークに追加

このページを印刷

外部サイトで検索

この本と繋がる本を検索

ウィキペディアから連想