Mathematical aspects of numerical grid generation

edited by José E. Castillo

Numerical grid generation plays a critical role in any scientific computing problem when the geometry of the underlying region is complex or when the solution has a complex structure. The mathematical aspects of grid generation are discussed to provide a deeper understanding of the algorithms and their imitations. Variational methods are emphasized because they are more robust, but elliptic and transcendental algebraic methods are also considered.

「Nielsen BookData」より


  • Preface
  • 1. Introduction J .E. Castillo and S. Steinberg
  • 2. Elliptic Grid Generation and Conformal Mapping C. W. Mastin
  • 3. Continuum Variational Formulation J. E. Castillo
  • 4. Discrete Variational Grid Generation J. E. Castillo
  • 5. Bifurcation of Grids on Curves S. Steinberg and P. J. Roache
  • 6. Intrinsic Algebraic Grid Generation P. M. Knupp
  • 7. Surface Grid Generation and Differential Geometry Z. U. A. Warsi
  • 8. Harmonic Maps in Grid Generation A. Dvinsky
  • 9. On Harmonic Maps G. Liao
  • 10. Mathematical Aspects of Harmonic Grid Generation S. S. Sritharan
  • References
  • Index.

「Nielsen BookData」より


書名 Mathematical aspects of numerical grid generation
著作者等 Castillo, José E.
Society for Industrial and Applied Mathematics
Castillo Jose E.
シリーズ名 Frontiers in applied mathematics
出版元 Society for Industrial and Applied Mathematics
刊行年月 1991
ページ数 xiv, 157 p.
大きさ 26 cm
ISBN 089871267X
NCID BA12684847
※クリックでCiNii Booksを表示
言語 英語
出版国 アメリカ合衆国