Cardinal spline interpolation

[by] I. J. Schoenberg

As this monograph shows, the purpose of cardinal spline interpolation is to bridge the gap between the linear spline and the cardinal series. The author explains cardinal spline functions, the basic properties of B-splines, including B- splines with equidistant knots and cardinal splines represented in terms of B-splines, and exponential Euler splines, leading to the most important case and central problem of the book - cardinal spline interpolation, with main results, proofs, and some applications. Other topics discussed include cardinal Hermite interpolation, semi-cardinal interpolation, finite spline interpolation problems, extremum and limit properties, equidistant spline interpolation applied to approximations of Fourier transforms, and the smoothing of histograms.

「Nielsen BookData」より

[目次]

  • The basis property of B-splines
  • The exponential Euler splines
  • Cardinal spline interpolation
  • Cardinal Hermite interpolation
  • Other spaces and semi-cardinal interpolation
  • Finite spline interpolation problems
  • Semi-cardinal interpolation and quadratures with general boundary Conditions
  • Extremum and limit properties
  • Applications: approximations of Fourier transforms and the smoothing of histograms.

「Nielsen BookData」より

この本の情報

書名 Cardinal spline interpolation
著作者等 Schoenberg, I. J
Rozier, Ron
シリーズ名 CBMS-NSF regional conference series in applied mathematics
出版元 Society for Industrial and Applied Mathematics
刊行年月 [c1973]
ページ数 vi, 125 p
大きさ 25 cm
ISBN 089871009X
NCID BA0139829X
※クリックでCiNii Booksを表示
言語 英語
出版国 アメリカ合衆国
この本を: 
このエントリーをはてなブックマークに追加

このページを印刷

外部サイトで検索

この本と繋がる本を検索

ウィキペディアから連想