Chaos and statistical methods : proceedings of the Sixth Kyoto Summer Institute, Kyoto, Japan, September 12-15, 1983

editor, Y. Kuramoto

[目次]

  • I General Concepts.- Coarse Graining Revisited -The Case of Macroscopic Chaos.- Gibbs Variational Principle and Fredholm Theory for One-Dimensional Maps.- Truncated Development of Chaotic Attractors in a Map when the Jacobian is not Small.- II Fractals in Dynamical and Stochastic Systems.- On the Dynamics of Iterated Maps VIII: The Map z??(z+1/z), from Linear to Planar Chaos, and the Measurement of Chaos.- Self-Similar Natural Boundaries of Non-Integrable Dynamical Systems in the Complex t Plane.- Topological Phase Transitions.- Dynamical System Related to an Almost Periodic Schrodinger Equation.- Mean Field Hausdorff Dimensions of Diffusion-Limited and Related Aggregates.- III Onset of Chaos.- Stability of the Scenarios Towards Chaos.- Functional Renormalization-Group Equations Approach to the Transition to Chaos.- Collapse of Tori in Dissipative Mappings.- Periodic Forcing Near Intermittency Threshold - Resonance and Collapse of Tori.- Perturbation Theory Analysis of Bifurcations in a Three-Dimensional Differential System.- IV One-Dimensional Mappings.- Noise-Induced Order - Complexity Theoretical Digression.- Symbolic Dynamics Approach to Intermittent Chaos - Towards the Comprehension of Large Scale Self-Similarity and Asymptotic Non-Stationarity.- Diffusion and Generation of Non-Gaussianity in Chaotic Discrete Dynamics.- Analytic Study of Power Spectra of Intermittent Chaos.- V Bifurcations and Normal Forms.- Versal Deformation of Singularities and Its Applications to Strange Attractors.- Some Codimension-Two Bifurcations for Maps, Leading to Chaos.- Bifurcations in Doubly Diffusive Convection.- Strange Attractors in a System Described by Nonlinear Differential-Difference Equation.- Coupled Chaos.- Bifurcations in 2D Area-Preserving Mappings.- VI Soliton Systems.- Chaotic Behavior Induced by Spatially Inhomogeneous Structures such as Solitons.- Chaotic Behaviour of Quasi Solitons in a Nonlinear Dispersive System.- VII Fluid Dynamics.- Inviscid Singularity and Relative Diffusion in Intermittent Turbulence.- Computational Synergetics and Innovation in Wave and Vortex Dynamics.- A Scalar Model of MHD Turbulence.- The Analytic Structure of Turbulent Flows.- Low Prandtl Number Fluids, a Paradigm for Dynamical System Studies.- Chaotic Attractors in Rayleigh-Benard Systems.- Onset of Chaos in Some Hydrodynamic Model Systems of Equations.- VIII Chemical and Optical Systems.- Instabilities and Chaos in a Chemical Reaction.- Optical Turbulence.- IX Anomalous Fluctuations.- Scaling Theory of Relative Diffusion in Chaos and Turbulence.- 1/f Resistance Fluctuations.- Index of Contributors.

「Nielsen BookData」より

この本の情報

書名 Chaos and statistical methods : proceedings of the Sixth Kyoto Summer Institute, Kyoto, Japan, September 12-15, 1983
著作者等 Kyoto Summer Institute
蔵本 由紀
Kuramoto Yoshiki
シリーズ名 Springer series in synergetics
出版元 Springer-Verlag
刊行年月 1984
版表示 Softcover reprint of the original 1st ed. 1984
ページ数 xi, 273 p.
大きさ 25 cm
ISBN 3540131566
0387131566
9783642695612
NCID BA00415327
※クリックでCiNii Booksを表示
言語 英語
出版国 ドイツ
この本を: 
このエントリーをはてなブックマークに追加

このページを印刷

外部サイトで検索

この本と繋がる本を検索

ウィキペディアから連想