Groups as Galois groups : an introduction

Helmut Völklein

This book describes various approaches to the Inverse Galois Problem, a classical unsolved problem of mathematics posed by Hilbert at the beginning of the century. It brings together ideas from group theory, algebraic geometry and number theory, topology, and analysis. Assuming only elementary algebra and complex analysis, the author develops the necessary background from topology, Riemann surface theory and number theory. The first part of the book is quite elementary, and leads up to the basic rigidity criteria for the realisation of groups as Galois groups. The second part presents more advanced topics, such as braid group action and moduli spaces for covers of the Riemann sphere, GAR- and GAL- realizations, and patching over complete valued fields. Graduate students and mathematicians from other areas (especially group theory) will find this an excellent introduction to a fascinating field.

「Nielsen BookData」より

[目次]

  • Part 1. The Basic Rigidity Criteria: 1. Hilbert's irreducibility theorem
  • 2. Finite Galois extensions of C (x)
  • 3. Descent of base field and the rigidity criterion
  • 4. Covering spaces and the fundamental group
  • 5. Riemann surfaces and their functional fields
  • 6. The analytic version of Riemann's existence theorem
  • Part II. Further Directions: 7. The descent from C to k
  • 8. Embedding problems: braiding action and weak rigidity
  • Moduli spaces for covers of the Riemann sphere
  • Patching over complete valued fields.

「Nielsen BookData」より

この本の情報

書名 Groups as Galois groups : an introduction
著作者等 Völklein, Helmut
Bollobas Bela
Fulton W.
Katok A.
Kirwan F.
Sarnak P.
Simon B.
Totaro B.
Volklein Helmut
シリーズ名 Cambridge studies in advanced mathematics
出版元 Cambridge University Press
刊行年月 1996
ページ数 xvii, 248 p.
大きさ 24 cm
ISBN 0521562805
NCID BA28531018
※クリックでCiNii Booksを表示
言語 英語
出版国 イギリス
この本を: 
このエントリーをはてなブックマークに追加

このページを印刷

外部サイトで検索

この本と繋がる本を検索

ウィキペディアから連想