#  ## Riemannian manifolds : an introduction to curvature

John M. Lee

This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet's Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

「Nielsen BookData」より

This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet's Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

「Nielsen BookData」より

[目次]

• What Is Curvature?.- Review of Tensors, Manifolds, and Vector Bundles.- Definitions and Examples of Riemannian Metrics.- Connections.- Riemannian Geodesics.- Geodesics and Distance.- Curvature.- Riemannian Submanifolds.- The Gauss-Bonnet Theorem.- Jacobi Fields.- Curvature and Topology.

「Nielsen BookData」より

[目次]

• What Is Curvature?.- Review of Tensors, Manifolds, and Vector Bundles.- Definitions and Examples of Riemannian Metrics.- Connections.- Riemannian Geodesics.- Geodesics and Distance.- Curvature.- Riemannian Submanifolds.- The Gauss-Bonnet Theorem.- Jacobi Fields.- Curvature and Topology.

「Nielsen BookData」より

### 書名 Riemannian manifolds : an introduction to curvature Lee, John M. Graduate texts in mathematics Springer c1997 xv, 224 p. 24 cm 0387983228 038798271X BA3271671X ※クリックでCiNii Booksを表示 英語 アメリカ合衆国

##  ##  