古田幹雄 著
アティア‐シンガーの指数定理は、楕円型線形微分作用素の指数が特性類を用いた位相不変量で表わされることを示した。それは一般次元のリーマン‐ロッホの定理、ヒルツェブルフの符号数定理を包括した形で定式化された。族の指数へと自然に拡張できる、位相的K理論を用いた直接的なアプローチを紹介する。あわせて、整数性定理など指数の本質を用いた応用例や、また群作用がある場合の4次元トポロジーへの応用などにも触れる。岩波講座「現代数学の展開」からの単行本。
「BOOKデータベース」より
[目次]
情報を取得できませんでした。
件が連想されています
ページトップへ