## Matrix groups

Morton L. Curtis

These notes were developed from a course taught at Rice University in the spring of 1976 and again at the University of Hawaii in the spring of 1977. It is assumed that the students know some linear algebra and a little about differentiation of vector-valued functions. The idea is to introduce some students to some of the concepts of Lie group theory --all done at the concrete level of matrix groups.

「Nielsen BookData」より

[目次]

• 1 General Linear Groups.- A. Groups.- B. Fields, Quaternions.- C. Vectors and Matrices.- D. General Linear Groups.- E. Exercises.- 2 Orthogonal Groups.- A. Inner Products.- B. Orthogonal Groups.- C. The Isomorphism Question.- D. Reflections in ?n.- E. Exercises.- 3 Homomorphisms.- A. Curves in a Vector Space.- B. Smooth Homomorphisms.- C. Exercises.- 4 Exponential and Logarithm.- A. Exponential of a Matrix.- B. Logarithm.- C. One-parameter Subgroups.- D. Lie Algebras.- E. Exercises.- 5 SO(3) and Sp(1).- A. The Homomorphism ?: S3?SO(3).- B. Centers.- C. Quotient Groups.- D. Exercises.- 6 Topology.- A. Introduction.- B. Continuity of Functions, Open Sets, Closed Sets.- C. Connected Sets, Compact Sets.- D. Subspace Topology, Countable Bases.- E. Manifolds.- F. Exercises.- 7 Maximal Tori.- A. Cartesian Products of Groups.- B. Maximal Tori in Groups.- C. Centers Again.- D. Exercises.- 8 Covering by Maximal Tori.- A. General Remarks.- B. (+) for U(n) and SU(n).- C. (+) for SO(n).- D. (+) for Sp(n).- E. Reflections in ?n (again).- F. Exercises.- 9 Conjugacy of Maximal Tori.- A. Monogenic Groups.- B. Conjugacy of Maximal Tori.- C. The Isomorphism Question Again.- D. Simple Groups, Simply-Connected Groups.- E. Exercises.- 10 Spin(k).- A. Clifford Algebras.- B. Pin(k) and Spin(k).- C. The Isomorphisms.- D. Exercises.- 11 Normalizers, Weyl Groups.- A. Normalizers.- B. Weyl Groups.- C. Spin(2n+1) and Sp(n).- D. SO(n) Splits.- E. Exercises.- 12 Lie Groups.- A. Differentiable Manifolds.- B. Tangent Vectors, Vector Fields.- C. Lie Groups.- D. Connected Groups.- E. Abelian Groups.- 13.- A. Maximal Tori.- B. The Anatomy of a Reflection.- C. The Adjoint Representation.- D. Sample Computation of Roots.- Appendix 1.- Appendix 2.- References.- Supplementary Index (for Chapter 13).

「Nielsen BookData」より

書名 Matrix groups Curtis, Morton Landers Curtis M. L. (Rice University USA) Universitext Springer-Verlag c1984 2nd ed. xiv, 210 p. 24 cm 3540960740 0387960740 BA03449846 ※クリックでCiNii Booksを表示 英語 アメリカ合衆国
この本を：