Applications of algebraic topology : graphs and networks : the Picard-Lefschetz theory and Feynman integrals

S. Lefschetz


  • I Application of Classical Topology to Graphs and Networks.- I. A Resume of Linear Algebra.- 1. Matrices.- 2. Vector and Vector Spaces.- 3. Column Vectors and Row Vectors.- 4. Application to Linear Equations.- II. Duality in Vector Spaces.- 1. General Remarks on Duality.- 2. Questions of Nomenclature.- 3. Linear Functions on Vector Spaces. Multiplication.- 4. Linear Transformations. Duality.- 5. Vector Space Sequence of Walter Mayer.- III. Topological Preliminaries.- 1. First Intuitive Notions of Topology.- 2. Affine and Euclidean Spaces.- 3. Continuity, Mapping, Homeomorphism.- 4. General Sets and Their Combinations.- 5. Some Important Subsets of a Space.- 6. Connectedness.- 7. Theorem of Jordan-Schoenflies.- IV. Graphs. Geometric Structure.- 1. Structure of Graphs.- 2. Subdivision. Characteristic Betti Number.- V. Graph Algebra.- 1. Preliminaries.- 2. Dimensional Calculations.- 3. Space Duality. Co-theory.- VI. Electrical Networks.- 1. Kirchoff's Laws.- 2. Different Types of Elements in the Branches.- 3. A Structural Property.- 4. Differential Equations of an Electrical Network.- VII. Complexes.- 1. Complexes.- 2. Subdivision.- 3. Complex Algebra.- 4. Subdivision Invariance.- VIII. Surfaces.- 1. Definition of Surfaces.- 2. Orientable and Nonorientable Surfaces.- 3. Cuts.- 4. A Property of the Sphere.- 5. Reduction of Orientable Surfaces to a Normal Form.- 6. Reduction of Nonorientable Surfaces to a Normal Form.- 7. Duality in Surfaces.- IX. Planar Graphs.- 1. Preliminaries.- 2. Statement and Solution of the Spherical Graph Problem.- 3. Generalization.- 4. Direct Characterization of Planar Graphs by Kuratowski.- 5. Reciprocal Networks.- 6. Duality of Electrical Networks.- II The Picard-Lefschetz Theory and Feynman Integrals.- I. Topological and Algebraic Considerations.- 1. Complex Analytic and Projective Spaces.- 2. Application to Complex Projective n-space Pn.- 3. Algebraic Varieties.- 4. A Resume of Standard Notions of Algebraic Topology.- 5. Homotopy. Simplicial Mappings.- 6. Singular Theory.- 7. The Poincare Group of Paths.- 8. Intersection Properties for Orientable M2n Complex.- 9. Real Manifolds.- II. The Picard-Lefschetz Theory.- 1. Genesis of the Problem.- 2. Method.- 3. Construction of the Lacets of Surface ?z.- 4. Cycles of ?z. Variations of Integrals Taken On ?z.- 5. An Alternate Proof of the Picard-Lefschetz Theorem.- 6. The ?1-manifold M. Its Cycles and Their Relation to Variations.- III. Extension to Higher Varieties.- 1. . Preliminary Remarks.- 2. First Application.- 3. Extension to Multiple Integrals.- 4. The 2-Cycles of an Algebraic Surface.- IV. Feynman Integrals.- 1. On Graphs.- 2. Algebraic Properties.- 3. Feynman Graphs.- 4. Feynman Integrals.- 5. Singularities.- 6. Polar Loci.- 7. More General Singularities.- 8. On the Loop-Complex.- 9. Some Complements.- 10. Examples.- 11. Calculation of an Integral.- 12. A Final Observation.- V. Feynman Integrals. B.- 1. Introduction.- 2. General Theory.- 3. Relative Theory.- 4. Application to Graphs.- 5. On Certain Transformations.- Subject Index Part I.- Subject Index Part II.

「Nielsen BookData」より


書名 Applications of algebraic topology : graphs and networks : the Picard-Lefschetz theory and Feynman integrals
著作者等 Lefschetz, Solomon
シリーズ名 Applied mathematical sciences
出版元 Springer-Verlag
刊行年月 1975
版表示 Softcover reprint of the original 1st ed. 1975
ページ数 viii, 189 p.
大きさ 26 cm
ISBN 354090137X
NCID BA0324804X
※クリックでCiNii Booksを表示
言語 英語
出版国 アメリカ合衆国

Clip to Evernote