A course in elasticity

B.M. Fraeijs de Veubeke ; translated by F.A. Ficken ; with the editorial assistance of D.A. Simons

[目次]

  • 1. Kinematics of Continuous Media.- 1.1. Material and Spatial Coordinates.- 1.2. Neighborhood Transformations.- 1.3 Composition of Changes of Configuration.- 1.4 Measure of the State of Local Deformation. Green's and Jaumann's Strain.- 1.5 Rigid-Body Rotations of a Neighborhood.- 1.6 The Kinematical Decomposition of the Jacobian Matrix.- 1.7 Geometric Interpretation of Infinitesimal Strains.- 1.8 The Eulerian Viewpoint in Kinematics. Almansi's Strain.- 1.9 Eulerian Measures of Rates of Deformation and Rotation.- 1.10 Temporal, Variation of the Polar Decomposition of the Jacobian Matrix.- 2. Statics and Virtual Work.- 2.1. The Concept of Stress. True Stress.- 2.2. The Piola Stresses.- 2.3. Translational Equilibrium Equations.- 2.4. Rotational Equilibrium Equations.- 2.5. Statics and Virtual Work.- 2.6. Commutativity of the Operators ? and Di.- 2.7 Virtual Work in a Continuous Medium.- 2.8. Statics and Virtual Power for True Stresses.- 2.9. Statics and Virtual Work in Infinitesimal Changes of Configuration.- 3. Conservation of Energy.- 3.1. Constitutive Equations for Piola's Stresses.- 3.2. The Kirchhoff-Trefftz Stresses.- 3.3 The Constitutive Equations of Geometrically Linear Elasticity.- 4. Cartesian Tensors.- 4.1. Bases and Change of Basis.- 4.2 Tensors.- 4.3 Some Special Tensors.- 4.4 The Vector Product.- 4.5. Structure of Symmetric Cartesian Tensors of Order Two. Principal Axes.- 4.6. Fundamental Invariants and the Deviator.- 4.7. Structure of Skew-Symmetric Cartesian Tensors of the Second Order.- 4.8. Matrix Representation of Tensor Operations.- 5. The Equations of Linear Elasticity.- 5.1. Compatibility of Strains in a Simply Connected Region.- 5.2. Compatibility of Strains in a Multiply Connected Region.- 5.3. Principal Elongations and Fundamental Invariants of Strain.- 5.4. Principal Stresses and Fundamental Invariants of the Stress State.- 5.5. Octahedral Stresses and Strains.- 5.6. Mohr's Circles.- 5.7. Statics and Virtual Work.- 5.8. Taylor's Development of the Strain Energy.- 5.9. Infinitesimal Stability.- 5.10. Hadamard's Condition for Infinitesimal Stability.- 5.11. Isotropy and Anisotropy.- 5.12. Criteria for Elastic Limits.- 5.13. Navier's Equations.- 5.14. The Beltrami-Michell Equations.- 6. Extension, Bending, and Torsion of Prismatic Beams.- 6.1. Green's and Stokes' Formulas.- 6.2. The Centroid.- 6.3. Moments of Inertia.- 6.4. The Semi-Inverse Method of Saint-Venant.- 6.5. Resultants of Stresses on a Cross Section.- 6.6. Calculation of the Transverse Displacements.- 6.7. Equations Governing the Shear Stresses.- 6.8. Calculation of the Longitudinal Displacement.- 6.9. Separation of Solutions.- 6.10. Pure Torsion.- 6.11. The Center of Torsion for a Fully Constrained Section.- 6.12. Bending without Torsion.- 6.13. The Stiffness Relation for the Twist.- 6.14. Total Energy as a Function of the Deformations of the Fibers.- 6.15. Total Energy as a Function of Generalized Forces.- 6.16. The Generalized Constitutive Equations for Bending and Torsion of Beams.- 6.17. One-Dimensional Formulation of Bending and Torsion of Beams.- 6.18. Applications.- A. Stress function for torsion of the elliptic bar.- B. Stress functions for torsion of the circular bar.- C. Stress functions with poles.- D. Torsion of a triangular bar.- E. Torsion of a rectangular bar.- F. Bending of a circular bar.- G. Bending of a circular tube.- H. Bending of a rectangular bar.- 7. Plane Stress and Plane Strain.- 7.1. Lemmas for the Integration of Partial Differential Equations in Complex Form.- 7.2. The Structure of a Biharmonic Function.- 7.3. Structure of the Solution of the Problems of Plane Strain.- 7.4.Structure of the Solution of the Problem of Plane Stress.- 7.5. Generalized Plane Stress.- 7.6. Airy's Stress Function.- 7.7. Complex Representation of Airy's Function.- 7.8. Polar Coordinates.- 7.9. Applications in Cartesian Coordinates.- A. The state of hydrostatic stress.- B. Uniform gradient of areal dilation.- C. Pure uniform shear.- D. Linear variation of a normal stress.- E. Simple extension.- F. Pure bending.- G. Shear lag.- H. Bending by shear forces.- I. Saint-Venant's bending of a rectangular beam with flanges.- J. Transverse loading of a beam with flanges.- 7.10. Applications in Polar Coordinates.- A. Circular aperture with traction-free circumference in a plate in plane stress.- B. Volterra's dislocation of the circular ring.- C. Bending of beams with constant curvature.- D. The annular ring loaded by shear tractions.- E. The thick tube under pressure.- F. Concentric cylindrical tubes and rings.- G. Force concentrated at the origin in an infinite plate.- 8. Bending of Plates.- 8.1. Basic Hypotheses.- 8.2. Application of the Canonical Variational Principle.- 8.3. The Two-Dimensional Canonical Principle.- 8.4. Further Connections Between the Two- and Three-Dimensional Theories.- 8.5. Other Types of Approximations.- 8.6. Kirchhoff's Hypothesis.- 8.7. Boundary Conditions in Kirchhoff's Theory.- 8.8. Kirchhoff's Variational Principle.- 8.9. Structure of the Solution of the Equations of Plates of Moderate Thickness.- 8.10. The Edge Effect.- 8.11. Torsion of a Plate.- 8.12. Saint-Venant's Bending of a Plate.- 8.13. Particular Solutions for Transverse Load.- 8.14. Solutions in Polar Coordinates.- 8.15. Axisymmetric Bending.

「Nielsen BookData」より

この本の情報

書名 A course in elasticity
著作者等 Fraeijs de Veubeke, B.
Ficken F.A.
Simons D.A.
Fraeijs de Veubeke B.M.
書名別名 Cours d'élasticité
シリーズ名 Applied mathematical sciences
出版元 Springer-Verlag
刊行年月 c1979
版表示 Softcover reprint of the original 1st ed. 1979
ページ数 xi, 330 p.
大きさ 24 cm
ISBN 354090428X
9780387904283
NCID BA01523915
※クリックでCiNii Booksを表示
言語 英語
原文言語 フランス語
出版国 アメリカ合衆国
この本を: 
このエントリーをはてなブックマークに追加

このページを印刷

外部サイトで検索

この本と繋がる本を検索

ウィキペディアから連想