Birkhoff interpolation

G.G. Lorentz, K. Jetter, S.D. Riemenschneider

This reference book provides the main definitions, theorems and techniques in the theory of Birkhoff interpolation by polynomials. The book begins with an article by G. G. Lorentz that discusses some of the important developments in approximation and interpolation in the last twenty years. It presents all the basic material known at the present time in a unified manner. Topics discussed include; applications of Birkhoff interpolation to approximation theory, quadrature formulas and Chebyshev systems; lacunary interpolation at special knots and an introduction to the theory of Birkhoff interpolation by splines.

「Nielsen BookData」より


  • 1. Basic definitions and properties
  • 2. Further elementary theorems
  • 3. Coalescence of rows
  • 4. Applications of coalescence
  • 5. Rolle extensions and independent sets of knots
  • 6. Singular matrices
  • 7. Zeros of Birkhoff splines
  • 8. Almost-Hermitian matrices
  • special three-row matrices
  • 9. Applications
  • 10. Birkhoff quadrature formulas
  • 11. Interpolation at the roots of unity
  • 12. Turan's problem of interpolation
  • 13. Birkhoff interpolation by splines
  • 14. Regularity theorems and self-dual problems
  • Bibliography and references
  • Indexes.

「Nielsen BookData」より


書名 Birkhoff interpolation
著作者等 Jetter, K.
Lorentz, George G.
Riemenschneider, S. D
Doran B.
Flajolet Philippe
Ismail M.
Lam T. Y.
Lutwak E.
Riemenschneider S. D.
Rota G.-C.
Wutwak E.
Lorentz G. G.
シリーズ名 Encyclopedia of mathematics and its applications
出版元 Cambridge University Press
刊行年月 1984
ページ数 lv, 237 p.
大きさ 25 cm
ISBN 0521302390
NCID BA01439240
※クリックでCiNii Booksを表示
言語 英語
出版国 イギリス

Clip to Evernote