Universal algebra

P.M. Cohn

[目次]

  • I: Sets and Mappings.- 1. The Axioms of Set Theory.- 2. Correspondences.- 3. Mappings and Quotient Sets.- 4. Ordered Sets.- 5. Cardinals and Ordinals.- 6. Categories and Functors.- II: Algebraic Structures.- 1. Closure Systems.- 2. ?-Algebras.- 3. The Isomorphism Theorems.- 4. Lattices.- 5. The Lattice of Subalgebras.- 6. The Lattice of Congruences.- 7. Local and Residual Properties.- 8. The Lattice of Categories of ?-Algebras.- III. Free Algebras.- 1. Universal Functors.- 2. ?-Word Algebras.- 3. Clones of Operations.- 4. Representations in Categories of ?-Algebras.- 5. Free Algebras in Categories of ?-Algebras.- 6. Free and Direct Composition of ?-Algebras.- 7. Derived Operators.- 8. Presentations of ?-Algebras.- 9. The Word Problem.- IV. Varieties.- 1. Definition and Basic Properties.- 2. Free Groups and Free Rings.- 3. The Generation of Varieties.- 4. Representations in Varieties of Algebras.- V. Relational Structures and Models.- 1. Relational Structures over a Predicate Domain.- 2. Boolean Algebras.- 3. Derived Predicates.- 4. Closed Sentence Classes and Axiomatic Model Classes.- 5. Ultraproducts and the Compactness Theorem.- 6. The Model Space.- VI. Axiomatic Model Classes.- 1. Reducts and Enlargements.- 2. The Local Determination of Classes.- 3. Elementary Extensions.- 4. p-Closed Classes and Quasivarieties.- 5. Classes Admitting Homomorphic Images.- 6. The Characterization of Axiomatic Model Classes.- VII. Applications.- 1. The Natural Numbers.- 2. Abstract Dependence Relations.- 3. The Division Problem for Semigroups and Rings.- 4. The Division Problem for Groupoids.- 5. Linear Algebras.- 6. Lie Algebras.- 7. Jordan Algebras.- Foreword to the Supplements.- VIII. Category Theory and Universal Algebra.- 1. The Principle of Duality.- 2. Adjoint Pairs of Functors.- 3. Monads.- 4. Algebraic Theories.- IX. Model Theory and Universal Algebra.- 1. Inductive Theories.- 2. Complete Theories and Model Complete Theories.- 3. Model Completions.- 4. The Forcing Companion.- 5. The Model Companion.- 6. Examples.- X. Miscellaneous Further Results.- 1. Subdirect Products and Pullbacks.- 2. The Reduction to Binary Operations.- 3. Invariance of the Rank of Free Algebras.- 4. The Diamond Lemma for Rings.- 5. The Embedding of Rings in Skew Fields.- XI. Algebra and Language Theory.- 1. Introduction.- 2. Grammars.- 3. Machines.- 4. Transductions.- 5. Monoids.- 6. Power Series.- 7. Transformational Grammars.- Bibliography and Name Index.- List of Special Symbols.

「Nielsen BookData」より

[目次]

  • I: Sets and Mappings.- 1. The Axioms of Set Theory.- 2. Correspondences.- 3. Mappings and Quotient Sets.- 4. Ordered Sets.- 5. Cardinals and Ordinals.- 6. Categories and Functors.- II: Algebraic Structures.- 1. Closure Systems.- 2. ?-Algebras.- 3. The Isomorphism Theorems.- 4. Lattices.- 5. The Lattice of Subalgebras.- 6. The Lattice of Congruences.- 7. Local and Residual Properties.- 8. The Lattice of Categories of ?-Algebras.- III. Free Algebras.- 1. Universal Functors.- 2. ?-Word Algebras.- 3. Clones of Operations.- 4. Representations in Categories of ?-Algebras.- 5. Free Algebras in Categories of ?-Algebras.- 6. Free and Direct Composition of ?-Algebras.- 7. Derived Operators.- 8. Presentations of ?-Algebras.- 9. The Word Problem.- IV. Varieties.- 1. Definition and Basic Properties.- 2. Free Groups and Free Rings.- 3. The Generation of Varieties.- 4. Representations in Varieties of Algebras.- V. Relational Structures and Models.- 1. Relational Structures over a Predicate Domain.- 2. Boolean Algebras.- 3. Derived Predicates.- 4. Closed Sentence Classes and Axiomatic Model Classes.- 5. Ultraproducts and the Compactness Theorem.- 6. The Model Space.- VI. Axiomatic Model Classes.- 1. Reducts and Enlargements.- 2. The Local Determination of Classes.- 3. Elementary Extensions.- 4. p-Closed Classes and Quasivarieties.- 5. Classes Admitting Homomorphic Images.- 6. The Characterization of Axiomatic Model Classes.- VII. Applications.- 1. The Natural Numbers.- 2. Abstract Dependence Relations.- 3. The Division Problem for Semigroups and Rings.- 4. The Division Problem for Groupoids.- 5. Linear Algebras.- 6. Lie Algebras.- 7. Jordan Algebras.- Foreword to the Supplements.- VIII. Category Theory and Universal Algebra.- 1. The Principle of Duality.- 2. Adjoint Pairs of Functors.- 3. Monads.- 4. Algebraic Theories.- IX. Model Theory and Universal Algebra.- 1. Inductive Theories.- 2. Complete Theories and Model Complete Theories.- 3. Model Completions.- 4. The Forcing Companion.- 5. The Model Companion.- 6. Examples.- X. Miscellaneous Further Results.- 1. Subdirect Products and Pullbacks.- 2. The Reduction to Binary Operations.- 3. Invariance of the Rank of Free Algebras.- 4. The Diamond Lemma for Rings.- 5. The Embedding of Rings in Skew Fields.- XI. Algebra and Language Theory.- 1. Introduction.- 2. Grammars.- 3. Machines.- 4. Transductions.- 5. Monoids.- 6. Power Series.- 7. Transformational Grammars.- Bibliography and Name Index.- List of Special Symbols.

「Nielsen BookData」より

この本の情報

書名 Universal algebra
著作者等 Cohn, P. M.
Cohn P. M.
シリーズ名 Mathematics and its applications
出版元 D. Reidel Pub. Co.
Sold and Kluwer Boston
刊行年月 c1981
版表示 Rev. ed
ページ数 xv, 412 p.
大きさ 23 cm
ISBN 9027712549
9027712131
NCID BA0134096X
※クリックでCiNii Booksを表示
言語 英語
出版国 オランダ
この本を: 
このエントリーをはてなブックマークに追加

Yahoo!ブックマークに登録
この記事をクリップ!
Clip to Evernote
このページを印刷

外部サイトで検索

この本と繋がる本を検索

ウィキペディアから連想