Universal subgoaling and chunking : the automatic generation and learning of goal hierarchies

by John Laird, Paul Rosenbloom, Allen Newell


  • I. Universal Subgoaling.- 1. Introduction.- 1.1. A Universal Weak Method.- 1.2. Requirements for Universal Subgoaling.- 1.3. Problem Spaces.- 2. The Soar Achitecture.- 2.1. Architecture Description.- 2.2. Soar as a Production System.- 2.3. Universal Subgoaling in Soar.- 2.4. The Universal Weak Method of Soar.- 2.5. The Rest of Soar.- 2.6. Review of Soar.- 3. Empirical Demonstration.- 3.1. Deliberate Subgoals.- 3.2. Universal Subgoaling.- 3.3. The Weak Methods.- 4. Discussion.- 4.1. Goals.- 4.2. Memory Management.- 4.3. Preferences.- 4.4. Production Systems.- 4.5. Future Work.- 5. Conclusion.- Acknowledgment.- References.- Appendix A. Universal Weak Method.- Appendix B. Weak Method Search Control.- II. The Chunking of Goal Hierarchies.- 1. Introduction.- 2. Practice.- 2.1. The Power Law of Practice.- 2.2. The Chunking Theory of Learning.- 2.3. The Results of Chunking in One Task.- 3. Stimulus-Response Compatibility.- 3.1. The Phenomena.- 3.2. Existing Stimulus-Response Compatibility Theory.- 3.3. The Algorithmic Model of Stimulus-Response Compatibility.- 3.4. Other Subphenomena and Experiments.- 4. Goal-Structured Models.- 4.1. The Basics of Goal Hierarchies.- 4.2. Chunking on Goal Hierarchies.- 4.3. A Revised Analysis of the Chunking Curve.- 5. The Xaps3 Architecture.- 5.1. Working Memory.- 5.2. Production Memory.- 5.3. The Cycle of Execution.- 5.4. Goal Processing.- 5.5. Chunking.- 6. Simulation Results.- 6.1. Update on the Seibel (1963) Task.- 6.2. The Compatibility Hierarchies.- 6.3. Compatibility and Practice.- 7. Discussion.- 7.1. On Choosing a Set of Model Operators.- 7.2. The Rate of Learning.- 7.3. Errors.- 7.4. Other Reaction-Time Phenomena.- 7.5. Relation to Previous Work on Learning Mechanisms.- 7.6. Chunking in More Complex Tasks.- 7.7. Chunking, Learning, and Problem-Space Search.- 8. Conclusion.- Acknowledgment.- References.- III. Towards Chunking As A General Learning Mechanism.- 1. Introduction.- 2. Soar-A General Problem-Solving Architecture.- 3. Chunking in Soar.- 4. Demonstration.- 4.1. Eight Puzzle.- 4.2. Tic-Tac-Toe.- 4.3. R1.- 4.4. Over-generalization.- 5. Conclusion.- Acknowledgment.- References.- Author Index.- I.- II.- III.

「Nielsen BookData」より


書名 Universal subgoaling and chunking : the automatic generation and learning of goal hierarchies
著作者等 Laird, John
Newell, Allen
Rosenbloom, Paul S.
Rosenbloom Paul
シリーズ名 The Kluwer international series in engineering and computer science
出版元 Kluwer Academic
刊行年月 c1986
ページ数 xxi, 313 p.
大きさ 25 cm
ISBN 0898382130
NCID BA01235535
※クリックでCiNii Booksを表示
言語 英語
出版国 アメリカ合衆国