Kinematic modeling, identification, and control of robotic manipulators

Henry W. Stone


  • 1. Introduction.- 1.1. Overview.- 1.2. Motivation.- 1.3. Dissertation Goals and Contributions.- 1.4. Dissertation Outline.- 2. Review of Robot Kinematics, Identification, and Control.- 2.1. Overview.- 2.2. Coordinate Frame Kinematic Models.- 2.2.1. Denavit-Hartenberg Model.- 2.2.2. Whitney-Lozinski Model.- 2.3. Models of Revolute Joint Manipulators.- 2.4. Modeling Assumptions.- 2.5. Kinematic Identification.- 2.6. Kinematic Control.- 2.7. Conclusions.- 3. Formulation of the S-Model.- 3.1. Overview.- 3.2. S-Model.- 3.3. Computing S-Model Parameters.- 3.4.Conclusions.- 4. Kinematic Identification.- 4.1. Overview.- 4.2.Kinematic Features.- 4.3 S-Model Identification.- 4.3.1. Overview.- Feature Identification.- Link Coordinate Frame Specification.- S-Model Parameter Computation.- Denavit-Hartenberg Parameter Extraction.- 4.3.2. Feature Identification.- Plane-of-Rotation Estimation.- Center-of-Rotation Estimation.- Line-of-Translation Estimation.- 4.3.3. Link Coordinate Frame Specification.- 4.3.4. S-Model Parameters.- 4.3.5. Denavit-Hartenberg Parameters.- 4.4. Conclusions.- 5. Inverse Kinematics.- 5.1. Overview.- 5.2. Newton-Raphson Algorithm.- 5.3. Jacobi Iterative Method.- 5.4. Performance Evaluation.- 5.5. Comparative Computational Complexity.- 5.6. Conclusions.- 6. Prototype System and Performance Evaluation.- 6.1. Overview.- 6.2. System Overview.- 6.3. Sensor System.- 6.3.1. Description.- 6.4. Generating Features.- 6.5. Measuring Performance.- 6.5.1. One-Dimensional Grid.- 6.5.2. Two-Dimensional Grid.- 6.5.3. Three-Dimensional Grid.- 6.6. Kinematic Performance Evaluation.- 6.6.1. One-Dimensional Performance Evaluation.- 6.6.2. Two-Dimensional Performance Evaluation.- 6.6.3. Three-Dimensional Performance Evaluation.- 6.7. Conclusions.- 7. Performance Evaluation Based Upon Simulation.- 7.1. Overview.- 7.2. A Monte-Carlo Simulator.- 7.2.1. Evaluating Kinematic Performance.- 7.2.2. Design Model Control.- 7.2.3. Signature-Based Control.- 7.3. Simulator Verification.- 7.4. Results.- 7.4.1. Encoder Calibration Errors.- 7.4.2. Machining and Assembly Errors.- 7.4.3. Sensor Measurement Errors.- 7.4.4. Number of Measurements.- 7.4.5. Effect of Target Radius.- 7.5. Conclusions.- 8. Summary and Conclusions.- 8.1. Introduction.- 8.2. Summary and Contributions.- 8.3. Suggestions for Future Research.- Appendix A. Primitive Transformations.- Appendix B. Ideal Kinematics of the Puma 560.- B.1. Forward Kinematics.- B.2. Inverse Kinematics.- Appendix C. Inverse Kinematics.- C.1. Newton-Raphson Computations.- C.2. Jacobi Iterative Computations.- Appendix D. Identified Arm Signtaures.- Appendix E. Sensor Calibration.- E.1. Calibration Rods.- E.2. Slant Range Compensation.- Appendix F. Simulator Components.- F.1. Robot Manufacturing Error Model.- F.2. Simulator Input Parameters.- Appendix G. Simulation Results.- G.1. Encoder Calibration Errors.- G.2. Machining and Assembly Errors.- G.3. Sensor Measurement Errors.- G.4. Number of Measurements.- G.5. Target Radius.- References.

「Nielsen BookData」より


書名 Kinematic modeling, identification, and control of robotic manipulators
著作者等 Stone, Henry W.
Stone H.W.
シリーズ名 The Kluwer international series in engineering and computer science
出版元 Kluwer Academic
刊行年月 c1987
ページ数 xviii, 224 p.
大きさ 25 cm
ISBN 0898382378
NCID BA01059396
※クリックでCiNii Booksを表示
言語 英語
出版国 アメリカ合衆国