Algebraic and geometric methods in nonlinear control theory

edited by M. Fliess and M. Hazewinkel

[目次]

  • Controllability, Observability, Realization and other Structural Properties.- Realization Theory for Nonlinear Systems
  • Three Approaches.- The Local Realization of Generating Series of Finite Lie Rank.- Realizations of Polynomial Systems.- Symmetries and Local Controllability.- The Intrinsic Geometry of Dynamic Observations.- Design of Nonlinear Observers by a Two-Step-Transformation.- Feedback Synthesis and Linearization Techniques.- On the Input-Output Decoupling of Nonlinear Systems.- Control of Nonlinear Systems Via Dynamic State-Feedback.- A Classification of Nonlinear Systems Based on the Invariant Subdistribution Algorithm.- Asymptotic Expansions, Root-Loci and the Global Stability of Nonlinear Feedback Systems.- Everything You Always Wanted to Know About Linearization.- Feedback Linearization and Simultaneous Output Block Decoupling of Nonlinear Systems.- Global Feedback Linearizability of Locally Linearizable Systems.- Global Aspects of Linearization, Equivalence to Polynomial Forms and Decomposition of Nonlinear Control Systems.- The Extended-Linearization Approach for Nonlinear Systems Problems.- About the Local Linearization of Nonlinear Systems.- Optimal Control.- Envelopes, Conjugate Points, and Optimal Bang-Bang Extremals.- Geometry of the Optimal Control.- Volterra Series and Optimal Control.- Optimal Control and Hamiltonian Input-Output Systems.- Discrete-Time Systems.- Nonlinear Systems in Discrete Time.- Local Input-Output Decoupling of Discrete Time Nonlinear Systems.- Orbit Theorems and Sampling.- Various other Theoretical Aspects.- An Infinite Dimensional Variational Problem Arising in Estimation Theory.- Iterated Stochastic Integrals in Nonlinear Control Theory.- Approximation of Nonlinear Systems by Bilinear Ones.- Applications.- Feedback Linearization Techniques in Robotics and Power Systems.- C.A.D. for Nonlinear Systems Decoupling, Perturbations Rejection and Feedback Linearization with Applications to the Dynamic Control of a Robot Arm.- A Nonlinear Feedback Control Law for Attitude Control.- Identification of Different Discrete Models of Continuous Non-linear Systems. Application to Two Industrial Pilot Plants.- Bang-Bang Solutions for a Class of Problems Arising in Thermal Control.

「Nielsen BookData」より

この本の情報

書名 Algebraic and geometric methods in nonlinear control theory
著作者等 Fliess, M.
Hazewinkel, Michiel
Fliess M.
シリーズ名 Mathematics and its applications
出版元 D. Reidel Pub. Co.
刊行年月 c1986
ページ数 xii, 642 p.
大きさ 25 cm
ISBN 9027722862
NCID BA00378967
※クリックでCiNii Booksを表示
言語 英語
出版国 オランダ
この本を: 
このエントリーをはてなブックマークに追加

このページを印刷

外部サイトで検索

この本と繋がる本を検索

ウィキペディアから連想