Generalized coherent states and their applications

A. Perelomov


  • I Generalized Coherent States for the Simplest Lie Groups.- 1. Standard System of Coherent States Related to the Heisenberg-Weyl Group: One Degree of Freedom.- 1.1 The Heisenberg-Weyl Group and Its Representations.- 1.1.1 The Heisenberg-Weyl Group.- 1.1.2 Representations of the Heisenberg-Weyl Group.- 1.1.3 Concrete Realization of the Representation T?(g).- 1.2 Coherent States.- 1.3 The Fock-Bargmann Representation.- 1.4 Completeness of Coherent-State Subsystems.- 1.5 Coherent States and Theta Functions.- 1.6 Operators and Their Symbols.- 1.7 Characteristic Functions.- 2. Coherent States for Arbitrary Lie Groups.- 2.1 Definition of the Generalized Coherent State.- 2.2 General Properties of Coherent-State Systems.- 2.3 Completeness and Expansion in States of the CS System.- 2.4 Selection of Generalized CS Systems with States Closest to Classical.- 3. The Standard System of Coherent States
  • Several Degrees of Freedom.- 3.1 General Properties.- 3.2 Coherent States and Theta Functions for Several Degrees of Freedom.- 4. Coherent States for the Rotation Group of Three-Dimensional Space.- 4.1 Structure of the Groups SO(3) and SU(2).- 4.2 Representations of SU(2).- 4.3 Coherent States.- 5. The Most Elementary Noneompact, Non-Abelian Simple Lie Group: SU(1,1).- 5.1 Group SU(1,1) and Its Representations.- 5.1.1 Fundamental Properties ofU(1,1) 67.- 5.1.2 Discrete Series.- 5.1.3 Principal (Continuous) Series.- 5.2 Coherent States.- 5.2.1 Discrete Series.- 5.2.2 Principal (Continuous) Series.- 6. The Lorentz Group: SO(3,1).- 6.1 Representations of the Lorentz Group.- 6.2 Coherent States.- 7. Coherent States for the SO(n, 1) Group: Class-1 Representations of the Principal Series.- 7.1 Class-I Representations of SO(n,1).- 7.2 Coherent States.- 8. Coherent States for a Bosonic System with Finite Number of Degrees of Freedom.- 8.1 Canonical Transformations.- 8.2 Coherent States.- 8.3 Operators in the Space ?B(+).- 9. Coherent States for a Fermionic System with Finite Number of Degrees of Freedom.- 9.1 Canonical Transformations.- 9.2 Coherent States.- 9.3 Operators in the Space ?F(+).- II General Case.- 10. Coherent States for Nilpotent Lie Groups.- 10.1 Structure of Nilpotent Lie Groups.- 10.2 Orbits of Coadjoint Representation.- 10.3 Orbits of Nilpotent Lie Groups.- 10.4 Representations of Nilpotent Lie Groups.- 10.5 Coherent States.- 11. Coherent States for Compact Semisimple Lie Groups.- 11.1 Elements of the Theory of Compact Semisimple Lie Groups..- 11.2 Representations of Compact Simple Lie Groups.- 11.3 Coherent States.- 12. Discrete Series of Representations: The General Case.- 12.1 Discrete Series.- 12.2 Bounded Domains.- 12.3 Coherent States.- 13. Coherent States for Real Semisimple Lie Groups: Class-I Representations of Principal Series.- 13.1 Class-I Representations.- 13.2 Coherent States.- 13.3 Horocycles in Symmetric Space.- 13.4 Rank-1 Symmetric Spaces.- 13.5 Properties of Rank-1 CS Systems.- 13.6 Complex Homogeneous Bounded Domains.- 13.6.1 Type-I Tube Domains.- 13.6.2 Type-II Tube Domains.- 13.6.3 Type-III Tube Domains.- 13.6.4 Type-IV Domains.- 13.6.5 The Exceptional Domain Dv.- 13.7 Properties of the Coherent States.- 14. Coherent States and Discrete Subgroups: The Case of SU(1,1).- 14.1 Preliminaries.- 14.2 Incompleteness Criterion for CS Subsystems Related to Discrete Subgroups.- 14.3 Growth of a Function Analytical in a Disk Related to the Distribution of Its Zeros.- 14.4 Completeness Criterion for CS Subsystems.- 14.5 Discrete Subgroups of SU(1,1) and Automorphic Forms.- 15. Coherent States for Discrete Series and Discrete Subgroups: General Case.- 15.1 Automorphic Forms.- 15.2 Completeness of Some CS Subsystems.- 16. Coherent States and Berezin's Quantization.- 16.1 Classical Mechanics.- 16.2 Quantization.- 16.3 Quantization on the Lobachevsky Plane.- 16.3.1 Description of Operators.- 16.3.2 The Correspondence Principle.- 16.3.3 Operator Th in Terms of a Laplacian.- 16.3.4 Representation of Group of Motions of the Lobachevsky Plane in Space ?h.- 16.3.5 Quantization by Inversions Analog to Weyl Quantization.- 16.4 Quantization on a Sphere.- 16.5 Quantization on Homogeneous Kahler Manifolds.- III Physical Applications.- 17. Preliminaries.- 18. Quantum Oscillators.- 18.1 Quantum Oscillator Acted on by a Variable External Force..- 18.2 Parametric Excitation of a Quantum Oscillator.- 18.3 Quantum Singular Oscillator.- 18.3.1 The Stationary Case.- 18.3.2 The Nonstationary Case.- 18.3.3 The Case of N Interacting Particles.- 18.4 Oscillator with Variable Frequency Acted on by an External Force.- 19. Particles in External Electromagnetic Fields.- 19.1 Spin Motion in a Variable Magnetic Field.- 19.2 Boson Pair Production in a Variable Homogeneous External Field.- 19.2.1 Dynamical Symmetry for Scalar Particles.- 19.2.2 The Multidimensional Case: Coherent States.- 19.2.3 The Multidimensional Case: Nonstationary Problem..- 19.3 Fermion Pair Production in a Variable Homogeneous External Field.- 19.3.1 Dynamical Symmetry for Spin-1/2 particles.- 19.3.2 Heisenberg Representation.- 19.3.3 The Multidimensional Case: Coherent States.- 20. Generating Function for Clebsch-Gordan Coefficients of the SU(2) group.- 21. Coherent States and the Quasiclassical Limit.- 22. 1/N Expansion for Gross-Neveu Models.- 22.1 Description of the Model.- 22.2 Dimensionality of Space ?N= ?O in the Fermion Case.- 22.3 Quasiclassical Limit.- 23. Relaxation to Thermodynamic Equilibrium.- 23.1 Relaxation of Quantum Oscillator to Thermodynamic Equilibrium.- 23.1.1 Kinetic Equation.- 23.1.2 Characteristic Functions and Quasiprobability Distributions.- 23.1.3 Use of Operator Symbols.- 23.2 Relaxation of a Spinning Particle to Thermodynamic Equilibrium in the Presence of a Magnetic Field.- 24. Landau Diamagnetism.- 25. The Heisenberg-Euler Lagrangian.- 26. Synchrotron Radiation.- 27. Classical and Quantal Entropy.- Appendix A. Proof of Completeness for Certain CS Subsystems.- Appendix B. Matrix Elements of the Operator D(y).- Appendix C. Jacobians of Group Transformations for Classical Domains.- Further Applications of the CS Method.- References.- Subject-Index.- Addendum. Further Applications of the CS Method.- References.- References to Addendum.- Subject-Index.

「Nielsen BookData」より


書名 Generalized coherent states and their applications
著作者等 Perelomov, A. M.
Perelomov A. M.
Perelomov A M
書名別名 Coherent states and their applications
シリーズ名 Texts and monographs in physics
出版元 Springer-Verlag
刊行年月 c1986
ページ数 xi, 320 p.
大きさ 25 cm
ISBN 3540159126
NCID BA0021682X
※クリックでCiNii Booksを表示
言語 英語
出版国 ドイツ

Clip to Evernote