Electronic structure and electronic transitions in layered materials

edited by Vincenzo Grasso


  • Electronic Energy Bands.- 1. Introduction.- 2. Transition metal dichalcogenides.- 2.1. Dichalcogenides of the Group IVB transition metals.- 2.2. Dichalcogenides of the Group VB transition metals.- 2.3. Dichalcogenides of the Group VIB transition metals.- 3. Transition metal trichalcogenides.- 4. Monochalcogenides of the Group IIIA elements.- 5. Monochalcogenides of the Group IVA elements.- 6. Dichalcogenides of the Group IVA elements.- 7. Iodides of Group IIB and IVA elements.- 7.1. CdI2.- 7.2. PbI2 and SnI2.- 8. Graphite and hexagonal BN.- 9. Miscellaneous layered materials.- 9.1. Arsenic chancogenides.- 9.2. Di-and trihalides.- 9.3. V2O5.- 9.4. Black phosphorous.- 9.5. ZrCl, ZrBr, ScCl, PtTe.- 9.6. Li3N.- 9.7. CaGa2.- References.- Optical Properties in the Low Energy Range.- 1. Introduction.- 2. Group II dihalides.- 2.1. Cadmium iodide (CdI2).- 2.2. Mercuric iodide (HgI2).- 2.3. Cadmium chloride and bromide (CdCl2, CdBr2).- 3. Group IV halides.- 3.1. Lead iodide (PbI2).- 3.2. Lead bromide (PbBr2).- 4. Group V halides.- 4.1. Bismuth and antimony triiodides (BiI3, SbI3).- 5. Transition metal halides.- 5.1. Cobalt Chloride and bromide (CoCl2, CoBr2).- 5.2. Chromium trichloride and tribromide (CrCl3, CrBr3).- 5.3. Nickel chloride and bromide (NiCl2, NiBr2).- 6. Group III chalcogenides.- 6.1. Gallium selenide (GaSe).- 6.2. Gallium sulphide (GaS).- 6.3. Indium selenide (InSe).- 6.4. Gallium telluride (GaTe).- 6.5. Mixed crystals (GaSxSe,1-x, GaSexTe,1-x).- 7. Group IV dichalcogenides.- 7.1. Tin Disulphide (SnS2).- 7.2. Tin diselenide (SnSe2).- 7.3. Hafnium disulphide (HfS2).- 8. Transition metal dichalcogenides.- 8.1. Group IV transition metal dichalcogenides (TiS2, TiSe2, TiTe2, ZrS2, ZrSe2).- 8.2. Group V transition metal dichalcogenides (TaS2, TaSe2, NbTe2, NbSe2).- 8.3. Group VI transition metal dichalcogenides (WS2, WSe2, MoS2, MoTe2).- References.- Optical Properties in the High Energy Range.- 1. Introduction.- 2. Theoretical background.- 2.1. The dielectric function.- 2.2. Vertical transitions.- 2.3. The projected density of states.- 2.4. Near edge structures: local approach.- 2.5. Effects of the finite photon momentum.- 3. Connections between experiment and theory.- 4. Core excitons.- 4.1. Introductory considerations.- 4.2. Insulating compounds.- 4.3. Semiconducting compounds.- 4.4. BN and graphite.- 5. Vacuum ultraviolet spectra.- 5.1. The III-VI compounds.- 5.2. The IV-VI compounds.- 5.3. The V-VI compounds.- 5.4. The transition metal chalcogenides.- 5.5. Graphite and BN.- 5.6. Ternary semiconductors.- 5.7. Metal halides.- 6. X-Ray spectra.- 6.1. Transition metal dichalcogenides.- 6.2. The III-VI compounds.- 6.3. Metal halides.- 6.4. EXAFS spectroscopy.- References.- Photoemission.- 1. Introduction.- 1.1. The EDC mode of photoemission.- 1.2. The CFS photoemission mode and partial-yield spectroscopy.- 1.3. The CIS mode.- 1.4. Photo-polarized photoemission.- 1.5. Angle-resolved photoemisison: the band-mapping technique.- 2. III-VI compounds.- 2.1. EDC's and CIS curves.- 2.2. Band mapping.- 2.3. The composition-dependent electronic structure of GaSxSe1-x solid.- 3. Group IV dichalcogenides: photoionization cross-section effects.- 3.1. Electronic structure of the valence and conduction bands of SnS2 and SnSe2.- 3.2. Core-level photoionization cross-section - extended fine structure.- 4. Group IV monochalcogenides.- 5. Layered halides: core excitonic effects.- 5.1. Electronic states: the important role of the lone-pair electrons.- 5.2. Core excitonic effects in PbI2 and BiI3.- 6. Transition-metal trichalcogenides and dichalcogenides.- 6.1. Transition-metal trichalcogenides.- 6.2. Transition-metal dichalcogenides.- 6.3. Photoemission investigations of phase transitions.- 7. Layer compounds of other families.- 7.1. Other kinds of binary and ternary layered chalcogenides.- 7.2. Graphite and intercalated graphite compounds.- 8. Final remarks.- References.- Plasmons in Layered Compounds.- 1. Outline.- 2. Plasmons in a uniaxial crystal: macroscopic theory.- 2.1. Electromagnetic equations.- 2.2. Normal modes.- 2.3. Damping of a light beam.- 2.4. Damping of fast electrons.- 3. Plasmon in selected layered crystals.- 3.1. Preliminaries.- 3.2. Insulators and semiconductors.- 3.3. Semimetals.- 3.4. Metals.- 4. Superlattice effects on a plasmon: the case of charge-density-waves.- 4.1. Scope of the section.- 4.2. Formulation.- 4.3. Plasmon shift due to the 3 X 3 charge density waves super-lattice of (2H) TaSe2.- 4.4. Plasmon damping caused by a charge density wave.- 5. Plasmons in electron-hole layered structures.- 5.1. Motivation.- 5.2. A model calculation.- 5.3. Results and discussions.- References.- Author Quotations Index.

「Nielsen BookData」より


書名 Electronic structure and electronic transitions in layered materials
著作者等 Grasso, Vincenzo
Grasso V.
シリーズ名 Physics and chemistry of materials with low-dimensional structures
出版元 D.Reidel
刊行年月 c1986
ページ数 xi, 517 p.
大きさ 25 cm
ISBN 9027721025
NCID BA00190067
※クリックでCiNii Booksを表示
言語 英語
出版国 オランダ

Clip to Evernote