Contemporary Optics

By (author) Ghatak, Ajoy


  • 1. Paraxial Ray Optics.- 1.1. Introduction.- 1.2. Fermat's Principle.- 1.3. Lagrangian Formulation.- 1.4 Hamiltonian Formulation.- 1.5. Application of the Hamiltonian Formulation to the Study of Paraxial Lens Optics.- 1.5.1. A Single Refracting Surface.- 1.5.2. Thin Lens.- 1.5.3. Thick Lens.- 1.6. Eikonal Approximation.- 1.6.1. Derivation of the Eikonal Equation.- 1.6.2. The Eikonal Equation and Fermat's Principle.- 1.7. Wave Optics as Quantized Geometrical Optics.- 2. Geometrical Theory of Third-Order Aberrations.- 2.1. Introduction.- 2.2. Expressions for Third-Order Aberrations.- 2.3. Physical Significance of the Coefficients A, B, C, D, and E.- 2.3.1. Spherical Aberration.- 2.3.2. Coma.- 2.3.3. Astigmatism and Curvature of Field.- 2.3.4. Distortion.- 2.4. The Coefficients Hij in Terms of Refractive-Index Variation.- 2.5. Aberrations of Graded-Index Media.- 2.6. Aberrations in Systems Possessing Finite Discontinuities in Refractive Index.- 2.6.1. A Plane Glass Surface.- 2.6.2. Aberration of a Thin Lens.- 2.7. Chromatic Aberration.- 3. Characteristic Functions.- 3.1. Introduction.- 3.2. Point Characteristic function.- 3.2.1. Definition and Properties.- 3.2.2. Abbe Sine Condition.- 3.3. Mixed Characteristic function.- 3.3.1. Definition and Properties.- 3.3.2. Third-Order Aberration of Rotationally Symmetric Systems.- 3.4. Angle Characteristic function.- 3.5. Explicit Evaluation of Characteristic Functions.- 3.5.1. Mixed Characteristic Function for a Plane Surface of Refraction.- 3.5.2. Angle Characteristic of a Spherical Surface of Refraction.- 4. Diffraction.- 4.1. Introduction.- 4.2. The Spherical Wave.- 4.3. Integral Theorem of Helmholtz and Kirchhoff.- 4.4. The Fresnel-Kirchhoff Diffraction Formula.- 4.5. Fraunhofer and Fresnel Diffraction.- 4.6. Fraunhofer Diffraction by a Rectangular Aperture.- 4.7. Fraunhofer Diffraction by a Circular Aperture.- 4.8. Distribution of Intensity in the Airy Pattern.- 4.9. Fresnel Diffraction by a Circular Aperture.- 4.10. Fresnel Diffraction by a Single Slit.- 4.11. Diffraction of Waves Having Amplitude Distribution along the Wavefront.- 4.12. Babinet's Principle.- 4.13. Periodic Apertures.- 4.14. Intensity Distribution near the Focal Plane.- 4.15. Optical Resonators.- 5. Partially Coherent Light.- 5.1. Introduction.- 5.2. Complex Representation.- 5.3. Mutual Coherence Function and Degree of Coherence.- 5.4. Quasi-Monochromatic Sources.- 5.5. Van Cittert-Zernike Theorem.- 5.6. Differential Equations Satisfied by ?12(?).- 5.7. Partial Polarization.- 5.7.1. The Coherency Matrix.- 5.7.2. Degree of Polarization.- 5.7.3. Measurement of the Elements of J.- 5.7.4. Optical Devices.- 6. Fourier Optics I. Spatial Frequency Filtering.- 6.1. Introduction.- 6.2. Fraunhofer and Fresnel Diffraction Approximations.- 6.3. Effect of a Thin Lens on an Incident Field Distribution.- 6.4. Lens as a Fourier-Transforming element.- 6.5. Spatial Frequency Filtering and Its Applications.- 6.5.1. Phase Contrast Microscopy.- 6.5.2. Cross-Correlation.- 6.5.3. Character Recognition.- 6.5.4. Multichannel Operation.- 6.5.5. Matrix Multiplication.- 7. Fourier Optics II. Optical Transfer Functions.- 7.1. Introduction.- 7.2. The Point-Spread function.- 7.3. Point-Spread Function of a Thin Lens.- 7.4. Frequency Analysis.- 7.5. Coherence and Resolution.- 8. Holography.- 8.1. Introduction.- 8.2. The Underlying Principle.- 8.3. Interference between Two Plane Waves.- 8.4. Point Source Holograms.- 8.5. Diffuse Illumination of the Object.- 8.6. Fourier Transform Holograms.- 8.6.1. Resolution in Fresnel and Fourier Transform Holograms.- 8.6.2. Lensless Fourier Transform Holograms.- 8.7. Volume Holograms.- 8.8. Applications of Holography.- 8.8.1. Three-Dimensional Reconstruction.- 8.8.2. Interferometry.- 8.8.3. Microscopy.- 8.8.4. Imaging through Aberrating Media.- 9. Self-Focusing.- 9.1. Introduction.- 9.2. Elementary Theory of Self-Focusing.- 9.3. More Rigorous Theory for Self-Focusing.- 9.4. Thermal Self-Focusing/Defocusing of Laser Beams.- 9.5. Solution of the Scalar Wave Equation with Weak Nonlinearity.- 9.6. General Problems on the Calculation of the Nonlinear Dielectric Constant.- 10. Graded-Index Waveguides.- 10.1. Introduction.- 10.2. Modal Analysis.- 10.3. Propagation through a Selfoc Fiber.- 10.3.1. Propagation of a Gaussian Beam Launched Symmetrically about the Axis.- 10.3.2. Propagation of a Gaussian Beam Launched at an Off-Axis Point Parallel to the Axis.- 10.4. Pulse Propagation.- 10.5. Fabrication.- 11. Evanescent Waves and the Goos-Hanchen Effect.- 11.1. Introduction.- 11.2. Existence of Evanescent Waves.- 11.3. Total Internal Reflection of a Bounded Beam.- 11.4. Physical Understanding of the Goos-Hanchen Shift.- 11.5. The Goos-Hanchen Effect in a Planar Waveguide.- 11.6. Prism-Film Coupler.- Appendix A. The Dirac Delta Function.- B. The Fourier Transform.- C. Solution of Equation (10.2-12).- References.

「Nielsen BookData」より


書名 Contemporary Optics
著作者等 Ghatak, Ajoy
シリーズ名 Optical Physics and Engineering
出版元 Springer-Verlag New York Inc.
刊行年月 2012.12.12
版表示 Softcover reprint of the original 1st ed. 1978
ページ数 384p
大きさ H229 x W152
ISBN 9781468423600
言語 英語
出版国 アメリカ合衆国

Clip to Evernote