Pharmaceutical data mining : approaches and applications for drug discovery

edited by Konstantin V. Balakin

Extracting and applying knowledge from chemical, biological, and clinical data is one of the biggest problems for the pharmaceutical industry. Focusing on diverse data mining approaches for drug discovery, including chemogenomics, toxicogenomics, and individual drug response prediction, Pharmaceutical Data Mining links theory to applications to illustrate how sophisticated computational data mining techniques can impact contemporary drug discovery and development. The book is of vital interest to pharmaceutical scientists, principal investigators and scientists, research directors, industrial and academic research libraries, and graduate students.

「Nielsen BookData」より


  • Preface. Acknowledgments. Contributors. PART I: DATA MINING IN THE PHARMACEUTICAL INDUSTRY: A GENERAL OVERVIEW. 1 A History of the development of Data Mining in Pharmaceutical Research ( David J. Livingstone and John Bradshaw). 2 Drug Gold and Data Dragons: Myths and Realities of Data Mining in the Pharmaceutical Industry (Barry Robson and Andy Vaithiligam). 3 Application of Data Mining Algorithms in Pharmaceutical Research and Development (Konstantin V. Balakin and Nikolay P. Savchuk). PART II: CHEMOINFORMATICS-BASED APPLICATIONS. 4 Data Mining Approaches for Compound Selection and Iterative Screening (Martin Vogt and Jurgen Bajorath). 5 Prediction of Toxic Effects of Pharmaceutical Agents (Andreas Maunz and Christoph Helma). 6 Chemogenomics-Based Design of GPCR-Targeted Libraries Using Data Mining Techniques (Konstantin V. Balakin and Elena V. Bovina). 7 Mining High-Throughput Screening Data by Novel Knowledge-Based Optimization Analysis (S. Frank Yan, Frederick J. King, Sumit K. Chanda, Jeremy S. Caldwell, Elizabeth A. Winzeler, and Yingyao Zhou). PART III: BIOINFORMATICS-BASED APPLICATIONS. 8 Mining DNA Microarray Gene Expression Data (Paolo Magni). 9 Bioinformatics Approaches for Analysis of Protein-Ligand Interactions (Munazah Andrabi, Chioko Nagao, Kenji Mizuguchi, and Shandar Ahmad). 10 Analysis of Toxicogenomic Databases (Lyle D. Burgoon). 11 Bridging the Pharmaceutical Shortfall: Informatics Approaches to the Discovery of Vaccines, Antigens, Epitopes, and Adjuvants (Matthew N. Davies and Darren R. Flower). PART IV: DATA MINING METHODS IN CLINICAL DEVELOPMENT. 12 Data Mining in Pharmacovigilance (Manfred Hauben and Andrew Bate). 13 Data Mining Methods as Tools for Predicting Individual Drug Response (Audrey Sabbagh and Pierre Darlu). 14 Data Mining Methods in Pharmaceutical Formulation (Raymond C. Rowe and Elizabeth A Colbourn). PART V: DATA MINING ALGORITHMS AND TECHNOLOGIES. 15 Dimensionality Reduction Techniques for Pharmaceutical Data Mining (Igor V. Pletnev, Yan A. Ivanenkov, and Alexey V. Tarasov). 16 Advanced Artificial Intelligence Methods Used in the Design of Pharmaceutical Agents (Yan A. Ivanenkov and Ludmila M. Khandarova). 17 Databases for Chemical and Biological Information (Tudor I. Oprea, Liliana Ostopovici-Halip, and Ramona Rad-Curpan). 18 Mining Chemical Structural Information from the Literature (Debra L. Banville). Index.

「Nielsen BookData」より


書名 Pharmaceutical data mining : approaches and applications for drug discovery
著作者等 Ekins, Sean
Balakin Konstantin V.
シリーズ名 Wiley series on technologies for the pharmaceutical industry
出版元 Wiley
刊行年月 c2010
ページ数 xvi, 561 p., [4] p. of plates
大きさ 25 cm
ISBN 9780470196083
NCID BB07256229
※クリックでCiNii Booksを表示
言語 英語
出版国 アメリカ合衆国