Gene cloning and DNA analysis : an introduction

T.A. Brown

Known world-wide as the standard introductory text to this important and exciting area, the sixth edition of Gene Cloning and DNA Analysis addresses new and growing areas of research whilst retaining the philosophy of the previous editions. Assuming the reader has little prior knowledge of the subject, its importance, the principles of the techniques used and their applications are all carefully laid out, with over 250 clearly presented four-colour illustrations. In addition to a number of informative changes to the text throughout the book, the final four chapters have been significantly updated and extended to reflect the striking advances made in recent years in the applications of gene cloning and DNA analysis in biotechnology. Gene Cloning and DNA Analysis remains an essential introductory text to a wide range of biological sciences students; including genetics and genomics, molecular biology, biochemistry, immunology and applied biology. It is also a perfect introductory text for any professional needing to learn the basics of the subject. All libraries in universities where medical, life and biological sciences are studied and taught should have copies available on their shelves. "...the book content is elegantly illustrated and well organized in clear-cut chapters and subsections...there is a Further Reading section after each chapter that contains several key references...What is extremely useful, almost every reference is furnished with the short but distinct author's remark." - Journal of Heredity , 2007 (on the previous edition)

「Nielsen BookData」より


  • Preface to the Sixth Edition. Part 1: The Basic Principles of Gene Cloning and DNA Analysis. 1 Why Gene Cloning and DNA Analysis are Important. 1.1 The early development of genetics. 1.2 The advent of gene cloning and the polymerase chain reaction. 1.3 What is gene cloning? 1.4 What is PCR? 1.5 Why gene cloning and PCR are so important. 1.6 How to find your way through this book. 2 Vectors for Gene Cloning: Plasmids and Bacteriophages. 2.1 Plasmids. 2.2 Bacteriophages. 3 Purification of DNA from Living Cells. 3.1 Preparation of total cell DNA. 3.2 Preparation of plasmid DNA. 3.3 Preparation of bacteriophage DNA. 4 Manipulation of Purified DNA. 4.1 The range of DNA manipulative enzymes. 4.2 Enzymes for cutting DNA - restriction endonucleases. 4.3 Ligation - joining DNA molecules together. 5 Introduction of DNA into Living Cells. 5.1 Transformation - the uptake of DNA by bacterial cells. 5.2 Identification of recombinants. 5.3 Introduction of phage DNA into bacterial cells. 5.4 Identification of recombinant phages. 5.5 Introduction of DNA into non-bacterial cells. 6 Cloning Vectors for E. coli . 6.1 Cloning vectors based on E. coli plasmids. 6.2 Cloning vectors based on M13 bacteriophage. 6.3 Cloning vectors based on l bacteriophage. 6.4 lambda and other high capacity vectors enable genomic libraries to be constructed. 6.5 Vectors for other bacteria. 7 Cloning Vectors for Eukaryotes. 7.1 Vectors for yeast and other fungi. 7.2 Cloning vectors for higher plants. 7.3 Cloning vectors for animals. 8 How to Obtain a Clone of a Specific Gene. 8.1 The problem of selection. 8.2 Direct selection. 8.3 Identification of a clone from a gene library. 8.4 Methods for clone identification. 9 The Polymerase Chain Reaction. 9.1 The polymerase chain reaction in outline. 9.2 PCR in more detail. 9.3 After the PCR: studying PCR products. 9.4 Real time PCR enables the amount of starting material to be quantified. Part 2: The Applications of Gene Cloning and DNA Analysis in Research. 10 Sequencing Genes and Genomes. 10.1 The methodology for DNA sequencing. 10.2 How to sequence a genome. 11 Studying Gene Expression and Function. 11.1 Studying the RNA transcript of a gene. 11.2 Studying the regulation of gene expression. 11.3 Identifying and studying the translation product of a cloned gene. 12 Studying Genomes. 12.1 Genome annotation. 12.2 Studies of the transcriptome and proteome. Part 3: The Applications of Gene Cloning and DNA Analysis in Biotechnology. 13 Production of Protein from Cloned Genes. 13.1 Special vectors for expression of foreign genes in E. coli . 13.2 General problems with the production of recombinant protein in E. coli . 13.3 Production of recombinant protein by eukaryotic cells. 14 Gene Cloning and DNA Analysis in Medicine. 14.1 Production of recombinant pharmaceuticals. 14.2 Identification of genes responsible for human diseases. 14.3 Gene therapy. 15 Gene Cloning and DNA Analysis in Agriculture. 15.1 The gene addition approach to plant genetic engineering. 15.2 Gene subtraction. 15.3 Problems with genetically modified plants. 16 Gene Cloning and DNA Analysis in Forensic Science and Archaeology. 16.1 DNA analysis in the identification of crime suspects. 16.2 Studying kinship by DNA profiling. 16.3 Sex identification by DNA analysis. 16.4 Archaeogenetics - using DNA to study human prehistory. Glossary. Index.

「Nielsen BookData」より


書名 Gene cloning and DNA analysis : an introduction
著作者等 Brown, T. A.
Brown T. A.
書名別名 Gene cloning & DNA analysis : an introduction
出版元 Wiley-Blackwell
刊行年月 2010
版表示 6th ed
ページ数 xvi, 320 p.
大きさ 25 cm
ISBN 9781444334074
NCID BB01890436
※クリックでCiNii Booksを表示
言語 英語
出版国 イギリス